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Abstract

An important research topic in Bioinformatics involves

the exploration of vast amounts of biological and biomed-

ical scientific literature (BioLiterature). Over the last few

decades, text-mining systems have exploited this BioLiter-

ature to reduce the time spent by researchers in its analy-

sis. However, state-of-the-art approaches are still far from

reaching performance levels acceptable by curators, and

below the performance obtained in other domains, such as

personal name recognition or news text.

To achieve high levels of performance, it is essential that

text mining tools effectively recognize bioentities present in

BioLiterature. This paper presents FiBRE (Filtering Bioen-

tity Recognition Errors), a system for automatically filtering

misannotations generated by rule-based systems that au-

tomatically recognize bioentities in BioLiterature. FiBRE

aims at using different sets of automatically generated an-

notations to identify the main features that characterize an

annotation of being of a certain type. These features are

then used to filter misannotations using a confidence thresh-

old.

The assessment of FiBRE was performed on a set of more

than 17,000 documents, previously annotated by Text De-

tective, a state-of-the-art rule-based name bioentity recog-

nition system. Curators evaluated the gene annotations

given by Text Detective that FiBRE classified as non-gene

annotations, and we found that FiBRE was able to filter

with a precision above 92% more than 600 misannotations,

requiring minimal human effort, which demonstrates the ef-

fectiveness of FiBRE in a realistic scenario.

1 Introduction

Analyzing BioLiterature is a painful and hard task, even

to an expert, given the large number of articles being pub-

lished and the complexity of their content. However, text-

mining tools applied to BioLiterature are also still far from

reaching performance levels comparable to the obtained in

other areas. For instance, text mining tools already achieve

both precision and recall higher than 90% in personal name

recognition on news text [18, 7, 10]. BioLiterature is also

more complex than news text: news text is written in a way

that the general public can understand its message, which

is not the case in BioLiterature that has a much smaller and

specific audience.

The main challenge in BioLiterature analysis is the lack

of a standard nomenclature for describing biologic concepts

and entities. We can often find different terms referring to

the same biological concept or entity (synonyms), or the

same term meaning different biological concepts or enti-

ties (homonyms). Also, genes whose name is a common

English word are frequent, which makes it difficult to rec-

ognize biological entities in the text [11]. These issues

make it difficult to correctly recognize entities and concepts

mentioned in a text and are at the root of the poor perfor-

mance exhibited by text-mining tools in BioLiterature anal-

ysis [6, 13]. Moreover, many state-of-the-art text-mining

tools that recognize entities in BioLiterature are rule-based,

and consequently are affected by the significant number of

exceptions that rules derived from BioLiterature must en-

compass. A serious bottleneck of these approaches is the

difficulty to devise from a subpart of the text a set of rules

incorporating all the possible exceptions to them. There-

fore, the application of these rules in a slightly different do-

main normally lead to a significant number of errors.

To address this problem we developed FiBRE (Filtering

Bioentity Recognition Errors), a system for automatically

filtering the errors made by rule-based systems that anno-

tate BioLiterature[4]. By annotation we mean the piece of

text where a bioentity was recognized, not the functional an-

notation. For each type of bioentity annotated, (e.g. gene,

protein, chemical compound, drug, disease, symptom) Fi-

BRE identifies the main features that characterize each an-

notation type. For example, consider that we have a set of



gene annotations and a set of disease annotations, FiBRE

will most probably find that the gene annotations almost

never have the word disease in the surroundings of the an-

notation, unlike disease annotations that frequently have the

word disease in the surroundings of the annotation. FiBRE

will use this kind of information to identify putative misan-

notations, i.e. the gene annotations with the word disease in

the surroundings of the annotation.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the state-of-the-art of Text Mining applied

to BioLiterature. Section 3 describes FiBRE in detail. Sec-

tion 4 presents the experimental evaluation of FiBRE using

the annotations made by a rule-based named entity recogni-

tion system. Finally, Section 5 expresses our main conclu-

sions.

2 State-of-the-art

Most state-of-the-art text-mining systems use a rule-

based or a case-based (statistical or machine-learning) ap-

proach for retrieving information from the text [5]. The

manual analysis of text requires less expertise in the case-

based approach than in the rule-based approach. In the rule-

based approach, the expert has to identify not only the ex-

pected output, but also how the relevant information is ex-

pressed. This expertise can, however, be used by rule-based

systems to achieve higher precision by selecting the most

reliable rules and patterns.

Many surveys report the performances of text-mining

tools that are run in different corpora (collection of docu-

ments) to execute different tasks [9, 1, 6, 14, 3]. On the

other hand, recent challenging evaluations compared the

performance of different approaches in solving the same

tasks using the same corpus [18], [7], [10],[8]. The results

achieved in these competitions show that text-mining sys-

tems are still far from reaching desirable performance lev-

els. Thus, novel techniques are required to reinforce and

further improve the quality and impact of Text Mining of

BioLiterature.

BioAlma is developing a state-of-the-art system named

Text Detective, which is capable of annotating a wide

range of biological entities, such as genes, proteins, chem-

ical compounds, drugs, diseases, symptoms and generic

biomedical terms [16]. Here is an example of the output

of an annotation returned by Text Detective, describing the

occurrence of the presumed gene 21-channel digital EEG

found in the abstract with PubMed identifier 10599856:

>10599856 Medline gene Homo sapiens

21-channel digital EEG 21-channel digital EEG 3:59-80 PA

The first line consists of the PubMed identifier, the type

of annotation and the organism name. The second line con-

tains the name and abbreviation of the gene, the place where

the gene was found (sentence number : start character - end

character), and labels describing the rule used to find this

annotation.

Text Detective is a rule-based system, which means that

the process of identifying the entities on the text is based on

a predefined set of rules that are manually managed. For the

gene identification process, the system achieves an average

of 80% precision, i.e. the system correctly annotates 80%

of the genes, and fails for the 20% remnant. Curators do

not normally consider this level of performance as satisfac-

tory, thus tools that could improve the performance of Text

Detective are much required. The identification of rules re-

quires more effort from the curators than the evaluation of

a limited set of cases. However, a single rule can express

knowledge beyond that contained in a large set of cases.

None of the knowledge representation techniques subsumes

the other: the knowledge enclosed in a rule is normally not

fully expressed by a finite set of cases, and it is difficult to

identify a set of rules encoding all the knowledge expressed

by a set of cases. Therefore, FiBRE intends to get the ben-

efits of both approaches by using the case-based approach

to validate the results of rule-based systems, such as Text

Detective. FiBRE uses the annotations of the rule-based

systems to automatically create the training sets, i.e. it is

based on weakly supervised machine-learning approaches

that were recently tested for identifying gene mentions in

text [17, 2].

3 FiBRE

FiBRE is an add-on tool for rule-based named entity

recognition systems that produce annotations at least of two

different types, e.g. gene and non-gene entities. FiBRE

can also be applied to case-based systems, but we think

that it would be much less effective than using rule-based

systems since in the bottom line we would be applying the

same technique twice. Having different categories is a pre-

requisite of any case-based approach, since the training set

should at least have positive and negative cases so that a

model can be created.

Input: FiBRE receives a set of annotations containing at

least two types of annotations that the named entity

recognition system found.

In our experiment, the annotations given by Text De-

tective were split in two sets: one with the gene an-

notations and the other with the remaining non-gene

annotations (chemical compounds, drugs, diseases and

symptoms).

Output: The output is the list of putative misannotations,

i.e. the annotations that were systematically irregular

for all training/test splits.



PubMed id Sentence Score Curation

15479369 Two of these were developed for children (the Haemo-QoL and the CHO-KLAT), and two for adults 0.99 ok

(the Hemofilia-QoL and the Hemolatin-QoL ).

15505396 This paper summarizes the published experience as well as results of the 3rd International 0.98 not ok

Workshop on Glutaryl-CoA Dehydrogenase Deficiencyheld in October 2003 in Heidelberg, Germany,

on the topic treatment of patients with glutaryl-CoA dehydrogenase ( GCDH ) deficiency.

15655003 In trial 3, heifers in IDO 3 (n = 71) were again treated as in IDO 1. 0.97 ok

15587756 Assessment of QT interval duration and dispersion in athlete’s heart. 0.97 ok

10599856 13 healthy subjects (28.5 3.8 years) were recorded with a 21-channel digital EEG during 0.94 ok

a stroboscopic alternative motion paradigm implying illusionary motion with ambiguous direction.

Table 1. Putative misannotations identified by FiBRE. The text highlighted represents the annotation
found by Text Detective in that sentence. For each annotation, FiBRE returns a confidence score
of it being a misannotation. The last column shows the curator decision, ok means that FiBRE was
correct and not ok means that the annotation is correct and therefore FiBRE was not. The last row
corresponds to the annotation presented in Section 2

.

In our experiment, the output is the given gene annota-

tions that FiBRE classified as non-genes. Each anno-

tation that FiBRE returns is accompanied by a classifi-

cation score provided by the classification method.

Figure 1 represents an outline of the main steps of Fi-

BRE: creation of the training and test sets by selecting an-

notations from both types; creation of the model using a

statistical classification method based on the training sets

of both categories; classification of the test set annotations

using the model; filtering of the annotations that were sys-

tematically irregular, i.e. that FiBRE classified as being of

a different type in all different training/test splits.

To use a machine-learning approach, FiBRE has to rep-

resent each annotation identified by Text Detective by a set

of features. Thus, FiBRE represents each annotation mainly

by three different types of features:

Context: the words that appear before and after the anno-

tation in the same sentence;

Annotation: the words present in the annotation;

Part-of: the prefixes and suffixes of words that appear in

the annotation.

Note that the annotation is not necessarily the name of

the bioentity recognized. Text Detective may have recog-

nized the bioentity by another expression. FiBRE ignored

stop words, such as in or on. for representing the anno-

tation. FiBRE also removed the commoner morphological

and inflectional endings from words to avoid creating dis-

tinct features for words with a similar meaning [15].

In the actual version FiBRE selects as context features at

most 8 other words of context, 4 after and 4 before the an-

notation, provided that the sentence contains enough words

before/after the annotation. In previous versions of FiBRE

we found that including more than 8 words as context fea-

tures did not improve the results at all. The value for each

context feature is proportional to its distance to the annota-

tion. FiBRE starts by assigning a value of 10 to the closest

word (after or before) and decreases 3 each time it moves far

away from the annotation, i.e. FiBRE assigns values from

the following set: 10, 7, 4, 1. If the same word appears be-

fore and after the annotation, the feature based on this word

will accumulate both values. Besides the context word it-

self, FiBRE creates another feature with the same value that

discriminates if the word was found after or before the an-

notation. FiBRE represents this feature by delimiting the

word by the > or < character if the word occurs before or

after the annotation, respectively.

FiBRE selects as annotation features the words that com-

pose the annotation and assigns to them a value of 10. If a

context word is present in the annotation, the features based

on this word will accumulate both values. Besides each an-

notation word itself, FiBRE creates another feature with the

same value that discriminates that the word is present in the

annotation. FiBRE represents this feature by delimiting the

word by the | character.

For each annotation word, FiBRE creates a feature for

the prefixes and suffixes of the word. By prefix and suffix

we consider the first and last n characters of the word, re-

spectively. The features are obtained by varying n from 2 to

5, i.e. for each word we have at most 4 prefixes and 4 suf-

fixes depending on the size of the word. FiBRE assigns a

value of 5 for each prefix and a value of 10 for suffixes. Fi-

BRE represents prefixes and suffixes features by adding the

character ∗ to the end of each prefix and to the beginning of

each suffix.

Figure 2 presents the FiBRE representation of the anno-

tation created by Text Detective presented in the last row

of Table 1. The annotation is represented by eight context

words and one annotation word and the features devised

from them.

After characterizing each annotation by a set of features,

FiBRE uses them in a machine-learning process performed
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Figure 1. FiBRE receives gene and non­gene
annotations from Text Detective and returns
the annotations that FiBRE systematically
classified as irregular, i.e. the gene annota­
tions that were classified as being non­gene
annotations and vice versa.

by a statistical classification method, to find the features that

characterize each type of annotation. The model generated

by the machine-learning process is then used by FiBRE to

classify all the annotations in the test set disregarding their

original type. This will produce two categories of annota-

tions: regular that were classified according to their original

type; and irregular that were classified as being of a differ-

ent type.

FiBRE executes the machine-learning process multiple

times with different training/test set splits in order to use

the same annotation sometimes for training other times for

testing. Finally, FiBRE classifies annotations that are sys-

tematically irregular for all training/test splits as putative

misannotations. Notice that besides being a case-based sys-

tem, FiBRE does not require any human intervention to cre-

ate the training sets, since they are automatically generated

from the set of annotations produced by the rule-based sys-

tem.

10599856#21-channel_digital_eeg#003#59:80#gene_pos gene_pos

>healthi> 1 >subject> 4 >year> 7 >record> 10

healthi 1 subject 4 year 7 record 10

<stroboscopic< 10 <alternative< 7 <motion< 4 <paradigm< 1

stroboscopic 10 alternative 7 motion 4 paradigm 1

|digital| 10 digital 10

di* 5 dig* 5 digi* 5 digit* 5

*gital 10 *ital 10 *tal 10 *al 10

Figure 2. FiBRE’s structured representation
of the annotation presented in Section 2. The
representation is composed by an unique
identifier (PubMed identifier, gene name, sen­
tence number, place in the sentence, type of
annotation), the original type of annotation,
and a list of features and their values.

To create the models and classify the annotations, we

used Bow, a library that performs statistical text classifica-

tion using one of several different classification methods

[12]. We tested the different classification methods pro-

vided by Bow. All of them gave similar results, but the

Probabilistic Indexing classification method achieved bet-

ter performance in both time and accuracy. Thus, the re-

sults presented on this paper were obtained using this clas-

sification method with forty different 60/40 training/test set

splits.

The same annotation can have different classification

scores, one for each time the annotation was used in the

test set. Thus, to rank the putative misannotations FiBRE

has to assign a single confidence score to each annotation

based on its multiple classification scores. FiBRE defined

the confidence score of each putative misannotation as the

minimum of all its classification scores. The reason for se-

lecting the minimum is the same reason why FiBRE only

selects the annotations that were never regular, i.e. FiBRE

aims at identifying annotations that are consistently irreg-

ular independently from the training/test split used. Thus,

by selecting the minimum FiBRE is assigning a higher con-

fidence score to the annotations with stable classification

scores. Other aggregate functions, besides the minimum,

could also be used, such as the maximum, medium or mean.

After assigning a confidence score to each putative mis-

annotation, we can tune the precision and recall of FiBRE

by filtering the putative misannotations based on a confi-

dence threshold, i.e., FiBRE returns only the putative mis-

annotations with a confidence score higher than the confi-

dence threshold used. The idea is that the probability of a

putative misannotation being a Text Detective error should

be proportional to its confidence score. This means that

as we increase the confidence threshold we may skip some

misannotations but we will improve the precision of FiBRE.
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Figure 4. Correct versus incorrect misanno­
tations returned by FiBRE.

4 Results and Discussion

FiBRE classified the annotations recognized by Text De-

tective from 17,585 abstracts. FiBRE has identified a to-

tal of 4,736 putative misannotations from 59,088 gene an-

notations generated by Text Detective. From these 4,736

putative misannotations, curators manually evaluated the

1,762 gene annotations. Almost all putative misannotations

with confidence scores above 0.7 were curated, except 48 of

them that were excluded by the curators because they could

not take an accurate decision about their correctness.

Table 1 presents some of the annotations that FiBRE pre-

dicted to be misannotations. For example, FiBRE identified

correctly the misannotation of QT because it is surrounded

by words that are unusual to be found near a gene, such as

interval. On the other hand, FiBRE identified incorrectly

the misannotation of GCDH because it is near the word de-

ficiency that is normally near diseases.

Precision measures the fraction of putative misannota-

tions identified by FiBRE that curators confirmed as being

Threshold Putative Curated Correct Precision Recall

0.9 223 218 203 93.1% 1.8%

0.8 622 617 568 92.1% 4.8%

0.7 1345 1297 995 76.7% 8.7%

0.6 2429 1414 1060 74.9% 15.4%

0.5 3971 1762 1203 68.3% 22.9%

Table 2. For different confidence score
thresholds, this table presents: the number
of putative misannotations identified by Fi­
BRE, how many were manually curated, how
many were curated as being real misannota­
tions, and the correspondent precision and
estimated recall values.

real misannotations. Table 2 shows the precision of these

annotations. For example, for a confidence threshold of 0.8

only 49 of the 617 putative misannotations evaluated were

not curated as being correct misannotations, which corre-

sponds to a precision of 92.1%. Figure 3 represents a plot of

the precision obtained by FiBRE over different confidence

thresholds. The plot shows that FiBRE has high precision

(higher than 90%) for all confidence thresholds above 0.8.

Moreover, the precision is almost constant (about 93%) for

thresholds between 0.8 and 0.95, which shows the reliabil-

ity of FiBRE for thresholds above 0.8.

Recall measures the fraction of misannotations gener-

ated by Text Detective that FiBRE was able to identify.

We can only estimate recall because it was unfeasible to

manually evaluate all the gene annotations recognized by

Text Detective, as well as the annotations filtered by FiBRE

for confidence thresholds below 0.7. To estimate the re-

call we assume that 20% of the total gene annotations pro-

duced by Text Detective are misannotations, as claimed by

their authors. Thus, the recall was estimated by the num-

ber of correct putative annotations over 59, 088 × 0.2, and

then multiplied by the rate of curation for that confidence

threshold, since not all the annotations were curated. Ta-

ble 2 shows that the filtering performed by FiBRE achieves

almost a recall of 5% for a precision of 92.1%. The num-

ber of putative misannotations increases exponentially with

the threshold, but the number of errors has only a small lin-

ear increase, as shown in Figure 4. This also demonstrates

that the performance of FiBRE is linearly proportional to

the confidence threshold and to the number of putative mis-

annotations identified.

The features that most influenced the classification

method to decide the type of the annotation were the fol-

lowing:

*tor recep* |receptor| >protein> <expression< protein

*is canc* |disease| >patient> <patient< cancer

The features in the first line can be easily recognized as

being important to classify an annotation as gene and the



ones in the second line as non-gene. This shows the ability

of FiBRE to automatically identify features that are clearly

significant to filter misannotations.

5 Conclusions

Motivated by the vast amount of publications, text-

mining systems have been developed to minimize the effort

of curators and to help researchers keep up with the progress

in a specific area of the biological sciences. However, exist-

ing text-mining tools are yet far from reaching performance

levels compared to those obtained in other areas. A text-

mining tool can only perform well when it is identifying

the bioentities correctly, since errors in the recognition are

propagated to the text-mining process.

To improve the precision of bioentity recognition tools

we developed FiBRE, a system capable of filtering errors

made by rule-based named bioentity recognition systems,

such as Text Detective. In this article we show that FiBRE

was able to identify about 5% of the total Text Detective

misannotations, with a precision of 92.1%, and requiring

minimal human effort, since it is fully automated and uses

only the results of Text Detective. However, FiBRE is only

effective when there is a substantial amount of accurate an-

notations available, otherwise the classification method will

be unable to find out the features that characterize the en-

tities. The annotations returned by Text Detective have a

precision of about 80%, which was shown to be sufficient

to effectively apply FiBRE.

In future work we intend to improve FiBRE by extending

the method to all the bioentities returned by Text Detective

(and not only genes), thus filtering errors from all kinds of

bioentities. We also intend to improve FiBRE by adjusting

the parameters of the classifiers for maximum performance;

by using efficient voting strategies with different training

sets and multiple classifiers; by integrating external domain

knowledge and thus generating new features; and by using

an individual classifier for each bioentity. We also intend

to use probabilistic models, such as a Bayesian network, to

decide whether a given annotation is correct or not based on

all classification scores instead of using only the minimum

score.
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